# Millions of tiny hypotheses

I think I recall the exact moment when I began to get a little scared of math. It was an algebra class and we were being taught tricks (tools) that could be used to solve different classes of problems. Except, I don’t recall the teacher ever explicitly saying this was a toolbox. I think what he did was go through a list of equations, performing some trick on each – like adding x to both sides, multiplying by y on both sides and so on – and then proceeding with algebraic simplification. This demoralized me, and started to make me less enthusiastic about actually doing mathematics, though I remained fascinated by it.

I also, I think, recall why I got demoralized. I watched him solve an equation with one of these tricks and sat there staring glumly at the board. I fully understood how to apply the technique, what I couldn’t figure out was how I would know that I would have to apply that technique to that problem as opposed to some other technique. What didn’t help was that I had classmates who seemed to breeze through it, knowing intuitively which equation required which tool.

Unfortunately I did not have enough self-realization at that time to go and ask for help over this, or to talk it over with my mother (who was a mathematician). I just decided I didn’t have the innate talent for mathematics. Fortunately this did not cripple me and I had no hesitation diving into topics like physics and then electrical engineering (which I probably chose because it was applied physics) which had enough interesting math, with cool applications.

Many years later a stray comment on some message board somewhere by someone stuck in my head. They said that the way they did mathematics was to form hypothesis after hypothesis, testing them. If the hypothesis results in a falsehood, discard it and start again. Another comment, on a different message board by a different person, said that it had been explicitly stated to them that there was no magical solutions to mathematical problems, and it was a myth that there were people with innate mathematical skills and those without: you solved mathematical problems through gumption – you kept banging your head against it, trying different things, figuring it out as you went.

These two simple comments made a big impression on me. They suddenly freed me from the expectation that mathematical talent was innate. It raised the possibility that stubbornness – a trait my mother was fond of pointing out in me – was all you needed to solve mathematical problems. I was not worried about the top 99th percentile of mathematicians who most probably had something special going on their brains. I just wanted to enjoy math, learn more and more of it, and see if I could use it in daily life. These comments were immensely liberating. I had looked at the journey between the problem and the solution as mostly an embarrassment, as in the longer it took, the stupider you were. These comments turned the journey into part of the process, something to take joy in.

I just wish my math teachers had said things like this. I know that when I teach my daughter mathematics this is what I’m going to emphasize. It’s about creating millions of small hypotheses – magical worlds with crazy ideas – and then applying mathematical rules to figure out if the ideas contradicted each other, or if they fit. Just like the shape puzzles she loves to solve. Each shape fits in a particular slot. Sometimes, you can see right away that the shape will fit in a slot. Sometimes, you make a guess, if it works, good. If it doesn’t, ALSO GOOD. YOU LEARNED SOMETHING! Now try a different slot!